Analisis Karakteristik Pengeringan Kunyit Menggunakan Menggunakan Mesin Pengering Sistem Rotasi Berbasis ANN-FL

Authors

  • Agus Susanto
  • Hanum Arrosida
  • Mohammad Erik Echsony
  • Moh. Taufiq Mahendra
  • Rilo Novanda Arya Pambudi

DOI:

https://doi.org/10.33504/manutech.v16i02.465

Keywords:

Artificial Neural Network, Fuzzy Logic, Turmeric Drying Characteristics

Abstract

Turmeric is one of the spices that has many health benefits so that it is widely consumed by humans, both for cooking spices, health therapy, and traditional cosmetics. Therefore, drying turmeric is one way to preserve turmeric so that it can be used for a long time. The purpose of this study was to analyze the properties or characteristics of turmeric drying using an automatic rotary drying machine. The Artificial Neural Network-Fuzzy Logic (ANN-FL) method was developed to model the relationship between drying parameters such as turmeric silage slice thickness, drying temperature, air flow rate, and drying time to the remaining water content and air humidity ratio. The first experiment showed a remaining water content of 10% from the initial water content of 75% with a final humidity of 40%. The second and third experiments showed water content to be 8% and 5% respectively from the initial water content of 80 and 85% with humidity of 30% and 15%. Artificial Neural Network (ANN) and Fuzzy Logic (FL) were modeled to learn patterns from experimental data obtained through experiments. The histogram of the model error shows that the distribution of errors between predictions and targets. Most of the errors are close to zero, indicating that the ANN-FL model has an accurate prediction rate. In addition, the training performance shows a decrease in Mean Squared Error (MSE) as the number of epochs increases, which means that the ANN-FL model learns well and reduces the prediction error as the number of epochs increases. The results of the study indicate that the ANN-FL method can be used to predict the water content of turmeric with a high level of accuracy. In addition, the ANN-FL method can also be used to control the temperature and humidity of turmeric drying so that more uniform and high-quality drying results are obtained.

Downloads

Download data is not yet available.

References

T. Chumroenphat, I. Somboonwatthanakul, S. Saensouk, S. Siriamornpun, Changes in curcuminoids and chemical components of turmeric (Curcuma longa L.) under freeze-drying and low-temperature drying methods, Food Chem. 339 (2021) 128121. https://doi.org/10.1016/j.foodchem.2020.128121.

S.M. Llano, A.M. Gómez, Y. Duarte-Correa, Effect of Drying Methods and Processing Conditions on the Quality of Curcuma longa Powder, Processes 10 (2022) 1–15. https://doi.org/10.3390/pr10040702.

H. Prabowo, I.A.P.D. Cahya, C.I.S. Arisanti, P.O. Samirana, Standarisasi Spesifik dan Non-Spesifik Simplisia dan Ekstrak Etanol Rimpang Kunyit (Curcuma domestica Val.), J. Farm. Udayana 8 (2019) 29. https://doi.org/10.24843/jfu.2019.v08.i01.p05.

C. Yuan Shan, Y. Iskandar, Studi Kandungan Kimia dan Aktivitas Farmakologi Tanaman Kunyit, J. Farmaka 16 (2018) 547–555. http://journal.unpad.ac.id/farmaka/article/view/17610/pdf.

L. Nuzuliyah, Analisis Nilai Tambah Produk Olahan Tanaman Rimpang, J. Teknol. Dan Manaj. Agroindustri 7 (2018) 31–38. https://www.industria.ub.ac.id/index.php/industri/article/view/347.

A.A. Okunola, T.A. Adekanye, C.E. Okonkwo, M. Kaveh, M. Szymanek, E.O. Idahosa, A.T. Olayanju, K. Wojciechowska, Drying Characteristics, Kinetic Modeling, Energy and Exergy Analyses of Water Yam (Dioscorea alata) in a Hot Air Dryer, Energies 16 (2023). https://doi.org/10.3390/en16041569.

M. Aghbashlo, M.H. kianmehr, H. Samimi-Akhijahani, Influence of drying conditions on the effective moisture diffusivity, energy of activation and energy consumption during the thin-layer drying of berberis fruit (Berberidaceae), Energy Convers. Manag. 49 (2008) 2865–2871. https://doi.org/10.1016/j.enconman.2008.03.009.

H. Darvishi, Quality, performance analysis, mass transfer parameters and modeling of drying kinetics of soybean, Brazilian J. Chem. Eng. 34 (2017) 143–158. https://doi.org/10.1590/0104-6632.20170341s20150509.

M. Beigi, M. Torki-Harchegani, M. Mahmoodi-Eshkaftaki, Prediction of paddy drying kinetics: a comparative study between mathematical and artificial neural network modeling, Chem. Ind. Chem. Eng. Q. 23 (2017) 251–258. https://doi.org/10.2298/CICEQ160524039B.

Arif Jumarwanto, R. Hartanto, D. Prastiyanto, Aplikasi Jaringan Syaraf Tiruan Backpropagation untuk Memprediksi Penyakit THT di Rumah Sakit Mardi Rahayu Kudus, J. Tek. Elektro 1 (2009) 11–21.

S.M. Jafari, M. Ganje, D. Dehnad, V. Ghanbari, Mathematical, Fuzzy Logic and Artificial Neural Network Modeling Techniques to Predict Drying Kinetics of Onion, J. Food Process. Preserv. 40 (2016) 329–339. https://doi.org/10.1111/jfpp.12610.

M.E. Echsony, N. Wahyudi, N.A. Hidayatullah, Setting Liquid Level Coupled Tank Using Fuzzy Adaptive Control, J. Electr. Eng. Mechatron. Comput. Sci. 1 (2018). https://doi.org/10.26905/jeemecs.v1i2.2423.

M.-M. V, G.-G.S. TS, M. MD, A. JM, using artificial neural networks, Dry. Technol. 33 (2015) 1708–1719. https://doi.org/https://doi.org/10.1080/07373937.2015.1005228.

M. Kaveh, R. Amiri Chayjan, Mathematical and neural network modelling of terebinth fruit under fluidized bed drying, Res. Agric. Eng. 61 (2015) 55–65. https://doi.org/10.17221/56/2013-RAE.

S.H. Samadi, B. Ghobadian, G.H. Najafi, A. Motevali, S. Faal, Drying of apple slices in combined heat and power (chp) dryer: Comparison of mathematical models and neural networks, Chem. Prod. Process Model. 8 (2013) 41–52. https://doi.org/10.1515/cppm-2013-0009.

A. Azadeh, N. Neshat, A. Kazemi, M. Saberi, Predictive control of drying process using an adaptive neuro-fuzzy and partial least squares approach, Int. J. Adv. Manuf. Technol. 58 (2012) 585–596. https://doi.org/10.1007/s00170-011-3415-2.

N. Behroozi Khazaei, T. Tavakoli, H. Ghassemian, M.H. Khoshtaghaza, A. Banakar, Applied machine vision and artificial neural network for modeling and controlling of the grape drying process, Comput. Electron. Agric. 98 (2013) 205–213. https://doi.org/10.1016/j.compag.2013.08.010.

I. Doymaz, Thin-layer drying characteristics of sweet potato slices and mathematical modelling, Heat Mass Transf. Und Stoffuebertragung 47 (2011) 277–285. https://doi.org/10.1007/s00231-010-0722-3.

A. Motevali, S. Younji, R.A. Chayjan, N. Aghilinategh, A. Banakar, Drying kinetics of dill leaves in a convective dryer, Int. Agrophysics 27 (2013) 39–47. https://doi.org/10.2478/v10247-012-0066-y.

Downloads

Published

2024-12-31

How to Cite

Susanto, A. ., Arrosida, H., Erik Echsony, M., Taufiq Mahendra, M. ., & Arya Pambudi, R. N. (2024). Analisis Karakteristik Pengeringan Kunyit Menggunakan Menggunakan Mesin Pengering Sistem Rotasi Berbasis ANN-FL. Manutech : Jurnal Teknologi Manufaktur, 16(02), 116 - 124. https://doi.org/10.33504/manutech.v16i02.465